\qquad
\qquad
Rational Numbers

How do we classify numbers?

Numbers that can be written as a comparison of two integers, expressed as a fraction, are called rational numbers.

Every rational number can be expressed as a decimal by dividing the numerator by the denominator.
The decimal form of a rational number is called a repeating decimal. If the repeating digit is zero, then the decimal is a terminating decimal.

Rational Number	Repeating Decimal	Terminating Decimal
$\frac{1}{2}$	$0.5000 \ldots$	0.5
$\frac{2}{5}$	$0.400 \ldots$	0.4
$\frac{5}{6}$	$0.833 \ldots$	does not terminate

Bar Notation
Bar notation is often used to indicate that a digit or group of digits repeats. The bar is placed above the repeating part. To write 8.636363 ... in bar notation, write $8 . \overline{6}$, not $8 . \overline{6}$ or $8 \overline{636}$. To write $0.3444 \ldots$ in bar notation, write $0.3 \overline{4}$, not $0.5 \overline{44}$.

$$
\begin{aligned}
& \frac{1}{9}=0 . T \\
& \frac{2}{9}=0 . \overline{2} \\
& \frac{4}{9}=0 . \overline{4}
\end{aligned}
$$

$$
\frac{4}{5}=0.8
$$

What if we have a repeating decimal that isn't one of these easy conversions?
5. Write $0 . \overline{5}$ as a fraction in simplest form.

Assign a variable to the value $0 . \overline{5}$. Let $N=0.555 \ldots$. Then
perform operations on N to determine its fractional value.
(10) $N=0.555 \ldots(10)$
$10 N=5.55555$
$10 N=5+N$
$-\frac{N-N}{Q N}=\frac{5}{9} \quad N=\frac{5}{9}$

$$
\begin{aligned}
& 5+0.555 \cdots \\
& 5+N
\end{aligned}
$$

6. Write $2 . \overline{18}$ as a mixed number in simplest form.

$$
\text { Let } N=2.181818 \ldots \quad N=0.181818 \ldots
$$

$$
\begin{aligned}
& \text { (100) } N=2,181818 \ldots(100) \\
& 100 N=218.181818 \ldots \\
& -N=-2.181818 \ldots \\
& \begin{array}{l}
99 \mathrm{~N}=\frac{216 \quad \mathrm{~N}=\frac{216}{99}}{}=2 \frac{18 \div 9}{99} \div 9=2 \frac{2}{11} \\
\text { Got It? Do these problems to ind out. }
\end{array} \\
& \text { (} 1000 \text {) } N=0.181818 \text {. } \\
& 100 N=18.181818 \ldots \\
& \text { - } N=-.181818 \ldots \\
& \frac{99 N}{79}=\frac{18}{99} \\
& N=2 \frac{18}{99} \\
& \begin{array}{l}
\text { Write each decimal as a traction or mixed number in simplest form. } \\
\text { f. }-0.14-14=-70.027=27,3
\end{array} \\
& \text { f. }-0.14=-\frac{14}{100}=-\frac{7}{50}{ }^{80.27}=\frac{27}{99}=\frac{3}{11}
\end{aligned}
$$

