\qquad
\qquad
\qquad

Lesson 6 Homework Practice

Write Linear Equations

Write an equation in point-slope form and slope-intercept form for each line.

1. passes through $(-5,6)$, slope $=3$
2. passes through $(0,1)$ and $(2,5)$
3. passes through $(1,-1)$ and $(2,0)$
4. passes through $(-3,-5)$, slope $=2$

Write the point-slope form of an equation for each line graphed.
7.

8.

9. TEMPERATURE The table shows the temperature at certain hours. Assuming the temperature change is linear, write an equation in point-slope form to represent the temperature y at x hour.

Hour	Temperature $\left({ }^{\circ} \mathbf{F}\right)$
1	35
2	39

10. SPEED After 2 hours, a car travels 70 miles. After 2.25 hours in the same trip, the car travels 78.75 miles. Write an equation in point-slope form to represent the distance y of the car after x hours.
\qquad
\qquad
\qquad

Lesson 6 Problem-Solving Practice

Write Linear Equations

1. BANQUETS The Soccer Banquet committee has found that 2 trays of lasagna will serve 15 people and 4 trays of lasagna will serve 30 people. Write an equation in point-slope form to represent the number of people y that can be served with x trays of lasagna.
2. CONCERT The cost for one ticket to a jazz concert is $\$ 7.50$. Two tickets cost $\$ 15$. Write an equation in point-slope form to represent the total cost y for x tickets.
3. TENNIS The table shows the cost of tennis lessons. Write an equation in point-slope form to represent the cost y of x tennis lessons.

Number of Lessons	Cost (\$)
5	100
10	150

4. DOWNLOADS It took 35 seconds for 5 songs to download to Rebecca's computer. The next day, it took 42 seconds for 6 songs to download. Write an equation in point-slope form to represent the time y it took to download x songs.
5. TRAVEL After 3 hours of driving, Elyse is 183 miles away from home. After 5 hours of driving, she is 305 miles from home. Write an equation in point-slope form to determine her distance y from home after x hours.
