Lesson 8 Homework Practice

Quadratic Functions

Graph each function.

1.
$$y = x^2$$

$$2. y = -x^2$$

$$3. y = x^2 + 3$$

4.
$$y = -x^2 + 3$$

$$5. y = x^2 - 5$$

6.
$$y = 3x^2 - 4$$

$$7. y = -2x^2 - 3$$

8.
$$y = 6x^2$$

9.
$$y = -3x^2 - 2$$

10. BALL The function $h = -16t^2 + 25t + 5$ can be used to represent the height h in feet of a juggler's ball after t seconds of being tossed in the air by a juggler 5 feet tall. Graph the function. Use your graph to estimate the height of a juggler's ball that has been in the air for 1.5 seconds.

Lesson 8 Problem-Solving Practice

Quadratic Functions

GEOMETRY For Exercises 1-3, use the following information.

The quadratic equation $A = 6x^2$ models the area of a triangle with base 3x and height 4x.

1. Graph the equation. Explain why you only need to graph the function in the upper right quadrant.

2. Explain how to find the area of the triangle when x = 3 inches. Then find the area.

3. Explain how to use your graph to determine the value of *x* when the area is 24 square inches. Then find the base and height of the triangle when its area is 24 square inches.

4. PHYSICS The quadratic equation $K = 500s^2$ models the kinetic energy in joules of a 1,000-kilogram car moving at a speed of s meters per second. Graph this function. Then use your graph to estimate the kinetic energy at a speed of 8 meters per second.

5. CARS The quadratic equation $d = \frac{s^2}{20}$ models the stopping distance in feet of a car moving at a speed of s feet per second. Graph this function. Then use your graph to estimate the stopping distance at a speed of 40 feet per second.

6. BUSINESS The quadratic equation $p = 50 + 2r^2$ models the gross profit made by a factory that produces r ovens. Graph this function. Then use your graph to estimate the profit for 5 ovens.

