\qquad

Comparing and Ordering Rational Numbers

Rational Numbers

Words Rational numbers can be written as fractions.
Algebra $\quad \frac{a}{b}$, where a and b are integers and $b \neq 0$.
Model

Fractions, terminating and repeating decimals, percents, and integers are all rational numbers. Every rational number can be expressed as a decimal by dividing the numerator by the denominator.

Rational Number	Repeating Decimal	Terminating Decimal
$\frac{3}{10}$	$0.300 \ldots$	0.3
$\frac{4}{5}$	$0.800 \ldots$	0.8
$\frac{5}{6}$	$0.833 \ldots$	does not terminate

To indicate the number pattern that repeats indefinitely, use bar notation. Bar notation is a bar placed over the digits that repeat.
$0.545454 \ldots=0 . \overline{54}$
$0.583333 \ldots=0.58 \overline{3}$

Repeating Decimals

 When dividing, it is sometimes helpful to divide until the repeated pattern is shown at least three times.
Example

1. Write $\frac{5}{12}$ as a decimal.

$$
\begin{aligned}
& \begin{aligned}
12 \\
\frac{0.4166}{5.000} \\
\frac{-48}{20} \\
\frac{-12}{80} \\
\frac{-72}{80}
\end{aligned} \text { Divide } 5 \text { by } 12 . \\
& \frac{n}{8}=d \sqrt{n}
\end{aligned}
$$

So, $\frac{5}{12}=0.4166 \ldots$ or $0.41 \overline{6}$.

How do you think you would convert negative fractions into decimals?

Write each fraction as a decimal. Use bar notation if necessary.

Positive and negative rational numbers can be represented on a number line. You can use a number line to help you compare and order rational numbers.

Examples

Fill in each with $<,>$, or $=$ to make a true statement.

1. $-1.2<0.8$

Graph the decimals on a number line.

Since -1.2 is to the left of $0.8,-1.2<0.8$.

-1.4 is move to the left so it's less than - 1.25 I

$$
\begin{aligned}
& \text { 3. }-\frac{3}{8}<-\frac{5}{16} \\
& \frac{3 \times 2}{8 \times 2}=\frac{6}{16} \\
& \frac{-6}{16}<-\frac{5}{16}
\end{aligned}
$$

To compare and order rational numbers, first write them in the same form.

Examples

Fill in each with $<,>$, or $=$ to make a true statement.
4. -0.51 \qquad

Rename $-\frac{8}{15}$ as a decimal. Then graph both decimals on a number line.

$$
\begin{aligned}
-\frac{8}{15}=-0.5 \overline{3} & -0.5333 \ldots \\
& -0.5100
\end{aligned}
$$

Since -0.51 is to the right of $-0.5 \overline{3}$ on the number line, $-0.51>-\frac{8}{15}$.
$-2.88-2.10$
5. Order the set $\left\{-2.46,-2 \frac{22}{25},-2 \frac{1}{10}\right\}$ from least to greatest.

$$
\begin{aligned}
& -2 \frac{22}{25},-2.46,-2 \frac{1}{10} \\
& -2 \frac{22 \times 4}{25 \times 44}=-2 \frac{88}{100}=-2.88 \\
& -2 \frac{1}{10}=-2.10
\end{aligned}
$$

(2)

$$
\begin{aligned}
& -3 \frac{5}{8}=-\frac{29}{8} \\
& 8 \sqrt{29}=-3.625
\end{aligned}
$$

Got It? Do these problems to find out.

$$
\sqrt{3.00}
$$

$$
7 \sqrt{3.00} \begin{aligned}
& -208 \\
& \frac{8}{20}
\end{aligned}
$$

$$
\frac{28}{20}
$$

$$
-7 \frac{17}{103}, \frac{93}{20}
$$

$$
-7.78
$$

$$
\begin{aligned}
& \text { Fill in each with }<,>\text {, or }=\text { to make a true statement. } \\
& \begin{array}{ll}
\text { e. }-3 \frac{5}{8}=-3.625 & \text { f. } \frac{3}{7}(0.413 \\
-3.625 &
\end{array} \\
& \text { g. Order the set }\left\{-7 \frac{13}{20},-7.78,-7 \frac{17}{100}\right\} \text { from greatest to least. } \\
& T \frac{13 \times 5}{20 \times 5}=\frac{65}{100} \quad 7 \frac{17}{100} \\
& \frac{.13}{\times 5} 5-7.65,-7.68,-7.19
\end{aligned}
$$

Example

6. Mr. Plum's science class is growing plants under different conditions. The table shows the difference from the average for some students' plants. Order the differences from least to greatest.

Express each number as a decimal.

Student	Difference (in.)
Ricky	$3 \frac{1}{4}$
Debbie	-2.2
Suni	1.7
Leonora	$-1 \frac{7}{10}$

$$
-2.2,-1 \frac{7}{10}, 1.7,3 \frac{1}{4}
$$

Fill in each with $<$,$\rangle , or =$ to make a true statement. (Examples 1-4)

1. $9.7>-10.3$
2. $\frac{5}{8}>-\frac{3}{8}$
3. $-6.7 \fallingdotseq-6 \frac{7}{10}$
4. $\left.-\frac{5}{6}\right\rangle-0.94$
5. $\frac{5}{4} \bigcirc-\frac{1}{4}$

6. $-6 \frac{1}{3} \bigcirc-6.375$
$13-\frac{3}{5}=-0.6$
7. $-9 \frac{2}{7} \oslash-9.3$

Order the following sets of numbers from least to greatest.
(Example 5)

$15\left\{2.8,-2 \frac{3}{4}, 3 \frac{1}{8},-2 . \overline{2}\right\}$
6. $\left\{\frac{2}{3},-0.6,0.65, \frac{4}{5}\right\}$
$5, \frac{2}{3}, \frac{4}{5}$
7. Financial Literacy The change in four stocks during a day are: $-4 \frac{1}{2}, 5.6,-2 \frac{3}{8}$, and 1.35 .
Order the changes from least to greatest. (Example 6)
$-4 \frac{1}{2},-2 \frac{3}{8}, 1.35,5.6$
13. CCSS Persevere with Problems Order the fractions $-\frac{1}{2}, \frac{5}{2},-\frac{12}{4}, \frac{1}{6}$, and $\frac{7}{8}$ from least to greatest.

$$
-\frac{12}{4},-\frac{1}{2}, \frac{1}{6}, \frac{7}{8}, \frac{5}{2}
$$

