Comparing and Ordering Rational Numbers

Rational Numbers

Words Rational numbers can be written as fractions.

Algebra

 $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

Model

Fractions, terminating and repeating decimals, percents, and integers are all rational numbers. Every rational number can be expressed as a decimal by dividing the numerator by the denominator.

Rational Number	Repeating Decimal	Terminating Decimal
<u>3</u> 10	0.300	0.3
4 5	0.800	0.8
<u>5</u> 6	0.833	does not terminate

To indicate the number pattern that repeats indefinitely, use bar notation. Bar notation is a bar placed over the digits that repeat.

 $0.545454... = 0.\overline{54}$

 $0.583333... = 0.58\overline{3}$

Repeating Decimals When dividing, it is sometimes helpful to divide until the repeated pattern is shown at least three times.

Example

How do you think you would convert negative fractions into decimals?

Positive and negative rational numbers can be represented on a number line. You can use a number line to help you compare and order rational numbers.

To compare and order rational numbers, first write them in the same form.

Examples

Fill in each with <, >, or = to make a true statement. 4. -0.51 $-\frac{8}{15}$ Rename $-\frac{8}{15}$ as a decimal. Then graph both decimals on a number line. -0.53 - 0.51 -0.6 - 0.55 -5 -0.5 -0.45 -0.4Since -0.51 is to the right of $-0.5\overline{3}$ on the number line, $-0.51 > -\frac{8}{15}$.

6. Mr. Plum's science class is growing plants under different conditions. The table shows the difference from the average for some students' plants. Order the differences from least to greatest.

Student	Difference (in.)
Ricky	3 <u>1</u>
Debbie	-2.2
Suni	1.7
Leonora	$-1\frac{7}{10}$

Express each number as a decimal.

 $-2.2, -1.7, 1.7, 3\frac{1}{4}$

Fill in each \bigcirc with <, >, or = to make a true statement. (Examples 1–4)					
1 . 9.7 > –10.3	2. $\frac{5}{8} > -\frac{3}{8}$	3. $-6.7 = -6\frac{7}{10}$	4. $-\frac{5}{6} > -0.94$		
w rk					

1.
$$\frac{5}{4} \ge -\frac{1}{4}$$

Show your work **2.** $-6\frac{1}{3} \ge -6.375$ **13** $-\frac{3}{5} \ge -0.6$ **4.** $-9\frac{2}{7} \swarrow -9.3$

Order the following sets of numbers from least to greatest. (Example 5)
5.
$$\left\{-3\frac{1}{3}, 3.3, -3\frac{3}{4}, 3.5\right\} - \frac{3^{2}}{3^{4}}, -3\frac{1}{3}, 3.3, 5 = 6$$
. $\left\{2.\overline{1}, -2.1, 2\frac{1}{11}, -2\right\} - 2.1, -2, 2\frac{1}{11}, 2.\overline{1}$
 $-3\frac{1}{3}\frac{1}{3}, 3.3, -3\frac{3}{4}, 3.5\right\} - 3\frac{1}{12}$ $-3\frac{1}{12}$ -2.1 $\left(2, -2.0\right)$
 $3.3 \left(2, 3.5\right)$ 2.7 $2\frac{1}{12}$ -2.1 $\left(2, -2.0\right)$
 $3.3 \left(2, 3.5\right)$ 2.7 $2\frac{1}{12}$ -2.1 $\left(2, -2.0\right)$
 $2.11 \left(11, 00000\right)$
 $2.111 \left(1.00000\right)$
 $2.111 \left(1.00000\right)$
 $2.111 \left(1.00000\right)$
 $-991 \left(1.0000\right)$
 $2.111 \left(1.00000\right)$
 $-991 \left(1.0000\right)$
 $-2\frac{3}{11}, -2.\overline{2}, 2.8, 3\frac{1}{8}$
 $-0.6, 0.65, \frac{4}{5}$
 $-0.6, 0.65, \frac{2}{3}, \frac{4}{5}$

7. Financial Literacy The change in four stocks during a day are: $-4\frac{1}{2}$, 5.6, $-2\frac{3}{8}$, and 1.35.

Order the changes from least to greatest. (Example 6)

13. Bersevere with Problems Order the fractions $-\frac{1}{2}, \frac{5}{2}, -\frac{12}{4}, \frac{1}{6}$, and $\frac{7}{8}$ from least to greatest.

$$-\frac{12}{4}, -\frac{1}{2}, -\frac{1}{6}, -\frac{7}{8}, -\frac{5}{2}$$