Name:

Date: _____

The Coordinate System

The coordinate system is made up of a <u>coordinate</u> on which you can locate points using the $\frac{\chi - \alpha \chi_{1S}}{\alpha}$ and $\frac{\chi - \alpha \chi_{1S}}{\alpha}$.

These axes are simply horizontal and vertical <u>number</u>

Any point on the coordinate plane can be located with an <u>Ordered</u> <u>parr</u>.

Identify Points and Ordered Pairs

A coordinate plane is formed when the x-axis and y-axis intersect at their zero points. The axes separate the coordinate plane into four regions called quadrants.

You can use the location on the plane or use the x-coordinates and y-coordinates to identify the quadrant in which a point is located.

Examples

1. Identify the ordered pair that names point C. Then identify the quadrant in which it is located.

Start at origin

2. Identify the point located at $(-1\frac{1}{2}, \frac{9}{-1})$. Then identify the quadrant in which it is located.

Ordered Pairs

A point located on the x-axis will have a y-coordinate of O. A point located on the y-axis will have an x-coordinate of O. Points located on an axis are not in any quadrant.

Got It? Do these problems to find out.

- a. Identify the ordered pair that names point A. Then identify the $\Rightarrow \left(-1, \frac{1}{2}\right)$ quadrant in which it is located.
- **b.** Identify the point located at (1, -2). Then identify the quadrant in which it is located.

Graph Ordered Pairs

When graphing ordered pairs, think of them as a set of directions! The first coordinate (x) tells you how far to move on the x-axis from the origin. The second coordinate (y) tells you how far to move on the y-axis from the origin.

Example 1: Graph point *A* at (3, 4).

Since we have a positive 3 as our x and a positive 4 as our y, we move 3 places to the right and then 4 places up.

Example 2: Graph point B at (-5, 2).

Since we have a negative five as our x and a positive 2 as our y, we move 5 places to the left and then 2 places up.

Example 3: Graph point C at (-1, -6).

Example 4: Graph point *D* at (7, -3).

Example 5: Graph point E at (-8, 0).

Example 6: Graph point F at (0, 9).

Example 7: Graph point G at $(-2\frac{1}{2}, -3\frac{1}{2})$.

Example 8: Graph point H at $(4.5, -1\frac{3}{4})$.

Graph	and	label th	e fol	lowing	points:
J(-4,	-1);	K(-4,	2);	L(3,	2)

What is the ordered pair of the fourth point, M, that will form a rectangle with the given ordered pairs?

	1 -	
Λ	12 1	1
\mathbb{N}		1
1 , (' /

Quadrant/Axis	x-coordinate	y-coordinate	Example
I	+	+	(8,3)
II		+	(-6,2)
III	_	1	(-4,-7)
IV	+	1	(4,-2)
x	#		(-10,6)
y	0	#	(0,10)

Guided Practice

Identify the ordered pair that names each point or the name of each point. Then identify the quadrant in which it is located. (Examples 1 and 2)

3.
$$\left(-2, 2\frac{1}{2}\right)$$

Identify the ordered pair that names each point. Then identify the quadrant in which it is located. (Example 1)

1.
$$R$$
 (2,2) $(2,5)$

Identify the name of each point. Then identify the quadrant in which it is located. (Example 2)

Graph and label each point on the coordinate plane to the right. (Examples 1 and 2)

1. T(0, 0)

2. D(2, 1)

3. K(−3.25, 3)

4. $N(0, -1\frac{1}{2})$

f(-4.5, 0)

6. $A(-3\frac{1}{2}, -3)$

7. L(2.5, -3.5)

8. $S(4, 2\frac{1}{2})$

Extra Practice

Identify the ordered pair that names each point. Then identify the quadrant in which it is located.

19. U

,rk (1, 3); I

positive so it is in the first quadrant.

Identify the name of each point. Then identify the quadrant in which it is located.

25.
$$\left(-1\frac{1}{2}, \frac{1}{2}\right)$$
 26. $\left(1, 1\frac{1}{2}\right)$ 27. $\left(\frac{1}{2}, -1\right)$ 5; \boxed{V}

26.
$$(1, 1\frac{1}{2})$$

$$\begin{cases} 27. \left(\frac{1}{2}, -1\right) \\ 5 \end{cases} \boxed{\boxed{1}}$$

28.
$$(1\frac{1}{2}, 0)$$
 29. $(-1\frac{1}{2}, -1\frac{1}{2})$ 30. $(-1, 1\frac{1}{2})$ C; IT

29.
$$\left(-1\frac{1}{2}, -1\frac{1}{2}\right)$$

30.
$$\left(-1, 1\frac{1}{2}\right)$$

Graph and label each point on the coordinate plane to the right.

21. B(-3, 4) The x-coordinate **22.** D(-1.5, 2.5)→ is -3. The y-coordinate is 4.

24.
$$J\left(2\frac{1}{2}, -2\frac{1}{2}\right)$$

27.
$$G(3\frac{1}{2}, 3)$$

28.
$$H\left(-3, -1\frac{1}{2}\right)$$