\qquad Date: \qquad

Rotations

Rotate a Figure About a Point

A rotation is a transformation in which a figure is rotated, or turned, about a fixed point. The center of rotation is the fixed point. A rotation does not change the size or shape of the figure. So, the preimage and the image are congruent.

Example

1. Triangle $L M N$ with vertices $L(5,4), M(5,7)$, and $N(8,7)$ represents a desk in Jackson's bedroom. He wants to rotate the desk counterclockwise 180° about vertex L. Graph the figure and its image. Then give the coordinates of the vertices for $\triangle L^{\prime} M^{\prime} N^{\prime}$.
$(1(5,4)$

$$
\begin{aligned}
& M^{\prime}(5,1) \\
& N^{\prime}(2,1)
\end{aligned}
$$

Now you try! For Exercises 1 and 2, graph $\triangle X Y Z$ and its image after each rotation. Then give the coordinates of the vertices for $\Delta X^{\prime} Y^{\prime} Z^{\prime}$.
a. 180° clockwise about vertex Z

$$
X^{\prime}(6,1), Y^{\prime}(4,-4), Z^{\prime}(2,-1)
$$

b. 90° clockwise about vertex X

$X^{\prime}(-2,-1), Y^{\prime}(1,-3), Z^{\prime}(-2,-5)$

Point A is located at $(15,10)$ on the coordinate plane to the right. Point B will be the rotation of Point A about the origin.

Plot point B after a $90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° rotation and label the rotations on the coordinate plane. Then, provide the coordinates of point B at each rotation in the table below.

1. What direction are the points moving in as the degrees of rotation increases? Decreases?
Counter-clockwise

j Clockwise $(-)$
2. What angle of rotation beings point B back to point A?

$$
360^{\circ}
$$

3. Provide the coordinates of point B at each rotation in the table below. Then, determine if you see any patterns with the ordered pairs and point A's coordinates.

Rotation Angle	Coordinates
$90^{\circ} /-270^{\circ}$	$(-10,15)$
$180^{\circ} /-180^{\circ}$	$(-15,-10)$
$270^{\circ} /-90^{\circ}$	$(10,-15)$
360°	$(15,10)$

$$
(15,10)
$$

4. Based on the patterns that you have observed, write the general coordinates of the image of a point rotated about the origin with coordinates (x, y) in the table below.

Angle of rotation	0°	$90^{\circ} /-270^{\circ}$	$180^{\circ}-180^{\circ}$	$270^{\circ} /-90^{\circ}$	360°
Coordinates of image of (x, y)	(x, y)	$(-y, x)$	$(-x,-y)$	$(y,-x)$	(x, y)

Example

2. Triangle $D E F$ has vertices $D(-4,4), E(-1,2)$, and $F(-3,1)$. Graph the figure and its image after a clockwise rotation of 90° about the origin. Then give the coordinates of the vertices for $\Delta D^{\prime} E^{\prime} F^{\prime}$.

Step 1 Graph $\triangle D E F$ on a coordinate plane.

Step 2 Sketch segment $\overline{E O}$ connecting point E to the origin. Sketch another segment, $\overline{E^{\prime} O}$, so that the angle between point E, O, and E^{\prime} measures 90° and the segment is the same length as $\overline{E O}$.

Step 3 Repeat Step 2 for points D and F. Then connect the vertices to form $\triangle D^{\prime} E^{\prime} F^{\prime}$.

So, the coordinates of the vertices of $\triangle D^{\prime} E^{\prime} F^{\prime}$ are $D^{\prime}(4,4), E^{\prime}(2,1)$, and $F^{\prime}(1,3)$.

$$
\begin{aligned}
& D^{\prime}(4,4) \quad F^{\prime}(1,3) \\
& E^{\prime}(2,1)
\end{aligned}
$$

b. Quadrilateral $B C D E$ has vertices $B(3,6), C(6,5), D(5,2)$, and $E(2,3)$. Graph the figure and its rotated image after a counterclockwise rotation of 180° about the origin. Then give the coordinates of the vertices for quadrilateral $B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.

$$
B^{\prime}(-3,-6), C^{\prime}(-6,-5), D^{\prime}(-5,-2) \text {, and } E^{\prime}(-2,-3)
$$

