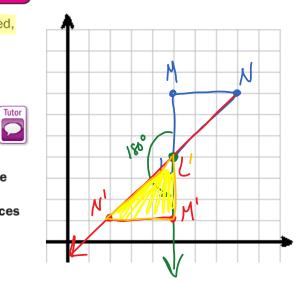
Date

Rotations

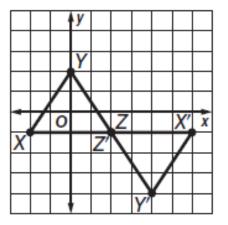
Rotate a Figure About a Point

A rotation is a transformation in which a figure is rotated, or turned, about a fixed point. The center of rotation is the fixed point. A rotation does not change the size or shape of the figure. So, the preimage and the image are congruent.

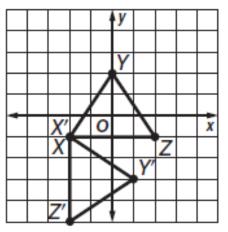


Example

M'(5,1)


N'(2,1)

1. Triangle *LMN* with vertices *L*(5, 4), *M*(5, 7), and *N*(8, 7) represents a desk in Jackson's bedroom. He wants to rotate the desk counterclockwise 180° about vertex *L*. Graph the figure and its image. Then give the coordinates of the vertices for $\triangle L'M'N'$.


Now you try! For Exercises 1 and 2, graph $\triangle XYZ$ and its image after each rotation. Then give the coordinates of the vertices for $\triangle X'Y'Z'$.

a. 180° clockwise about vertex Z

X'(6,1), Y'(4, -4), Z'(2, -1)

b. 90° clockwise about vertex X

How do you rotate geometric figures about the origin?

Point A is located at (15, 10) on the coordinate plane to the right. Point B will be the rotation of Point A about the origin.

Plot point B after a 90°, 180°, 270°, and 360° rotation and label the rotations on the coordinate plane. Then, provide the coordinates of point B at each rotation in the table below.

1. What direction are the points moving in as the degrees of rotation increases? Decreases?

Counter-clockwise ; Clockwise (+) (-)

2. What angle of rotation beings point B back to point A?

360°

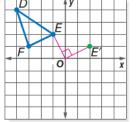
20 10 -20 -10 0 10 20 -10 20

3. Provide the coordinates of point B at each rotation in the table below. Then, determine if you see any patterns with the ordered pairs and point A's coordinates.

Rotation Angle	Coordinates
90°/-270°	(-10, 15)
180°/-180°	(-15,-10)
270°/-90°	(10, -15)
360°	(15,10)

(15, 16)

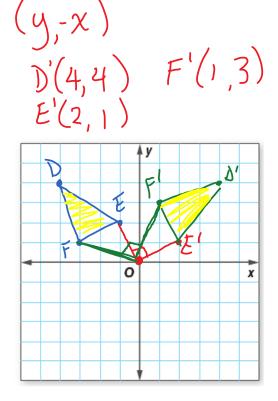
4. Based on the patterns that you have observed, write the general coordinates of the image of a point rotated about the origin with coordinates (x, y) in the table below.


Angle of rotation	0°	90°/-270°	180°/-180°	270°/-90°	360°
Coordinates of image of (<i>x</i> , <i>y</i>)	(χ, η)	(-y, x)	(-x, -y)	$(y, -\chi)$	(x,y)

Example

- **2.** Triangle *DEF* has vertices D(-4, 4), E(-1, 2), and F(-3, 1). Graph the figure and its image after a clockwise rotation of 90° about the origin. Then give the coordinates of the vertices for $\triangle D'E'F'$.
- Step 1

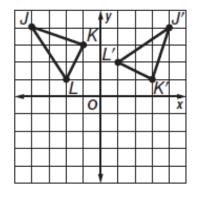
Graph $\triangle DEF$ on a coordinate plane.

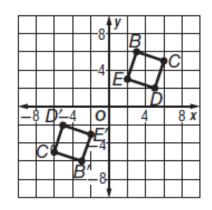

Step 2 Sketch segment \overline{EO} connecting point *E* to the origin. Sketch another segment, $\overline{E'O}$, so that the angle between point *E*, *O*, and *E'* measures 90° and the segment is the same length as \overline{EO} .

Step 3 Repeat Step 2 for points *D* and *F*. Then connect the vertices to form $\triangle D'E'F'$.

So, the coordinates of the vertices of $\triangle D'E'F'$ are D'(4, 4), E'(2, 1), and F'(1, 3).

D		1	1 y			Ι.	D'
			F'			1	
		F	ŕ			1	\square
			-	ł			\vdash
	4	\mathbf{X}	_			<u> </u>	\square
F		X	Z		E'		
		0					X
							\vdash
		-	-	-	-	-	\vdash




Now you try!

a. Triangle *JKL* has vertices J(-4, 4), K(-1, 3), and L(-2, 1). Graph the figure and its rotated image after a clockwise rotation of 90° about the origin. Then give the coordinates of the vertices for triangle J'K'L'.

J'(4, 4), K'(3, 1), and L'(1, 2)

b. Quadrilateral *BCDE* has vertices B(3, 6), C(6, 5), D(5, 2), and E(2, 3). Graph the figure and its rotated image after a counterclockwise rotation of 180° about the origin. Then give the coordinates of the vertices for quadrilateral B'C'D'E'.

