\qquad
\qquad
Scientific Notation
Warm-up: Complete the table. Answer the questions below.

1) When 5.678 is multiplied by a positive power of 10 , what relationship exists between the decimal point's new position and the exponent?
The exponent value is the amount of
times you move the decimal point to the right.
2) When 5.678 is multiplied by a negative power of 10 , what relationship exists between the decimal point's new position and the exponent?
The exponent value is the amount of times you move the decimal point to the left.

Key Concept Scientific Notation

Work Zone

Powers of Ten Multiplying a factor by a positive power of 10 moves the decimal point right. Multiplying a factor by a negative power of 10 moves the decimal point left.
a. \qquad
Example $425,000,000=4.25 \times 10^{8}$

Use these rules to express a number in scientific notation.

- If the number is greater than or equal to 1 , the power of ten is positive.
- If the number is between 0 and 1 , the power of ten is negative.

Examples
Write each number in standard form.

1. 5.34×10^{4}
2. 3.27×10^{-3}
$5.34 \times 10^{4}=53,400$.
$\overbrace{0}^{0} 3.27 \times 10^{-3}=0.00327$
Got It? Do these problems to find out.
a. 7.42×10^{5}
b. 6.1×10^{-2}
c. 3.714×10^{2}

Examples
Write each number in scientific notation.
3. 3,725000 3.725×10^{6}
$3.725 \mathrm{incos}^{0}$

Got It? Do these problems to find out.

d. $14,140,000$
e. 0.00876
f. 0.114

Copy the chart. Complete it without using your calculator.

Description	Number in Standard Form (approximate)	Number in Scientific Notation
Time since dinosaurs began roaming Earth (years)	$225,000,000$	6.8×10^{9}
Projected World population in 2010		1.5×10^{19}
Distance from Earth to Andromeda galaxy (miles)		
Mass of the sun (kg)	$2,000,000,000,000,000,000,000,000,000,000$	

Description	Number in Standard Form (approximate)	Number in Scientific Notation
Average mass of a hydrogen atom (grams)	0.0000000000000000000000016735	
Diameter of the body of a Purkinje cell (meters)		8×10^{-5}
Diameter of some fats in the body (meters)	0.000000000000000000000026566	5×10^{-10}
Average mass of an oxygen atom (grams)		

For each pair of numbers, indicate which is greater. 18. $2.34 \times 10^{5} \circ 1.35 \times 10^{8}$
19. 3.83312×10^{31} or 8.1×10^{32}

22. 1.92×10^{-3} or 0.21×10^{-2}

25. 9.384×10^{-23} or 7.6×10^{-24}
26. 3.83312×10^{-31} or 8.1×10^{-32}

Example

5. Refer to the table at the right.

Order the countries according to the amount of money visitors spent in the United States from greatest to least.

Canada and United Kingdom
Step $1\left\{\begin{array}{c}1.06 \times 10^{7} \\ 1.03 \times 10^{7}\end{array}\right\}$

Mexico and India

Dollars Spent by International Visitors in the U.S	
Country	Dollars Spent
Canada	1.03×10^{7}
India	1.83×10^{6}
Mexico	7.15×10^{6}
United Kingdom	1.06×10^{7}

Group the
numbers by their
power of 10 .

Step 2

Got It? Do this problem to find out.

g. Some of the top U.S. cities visited by overseas travelers are shown in the table.
Order the cities according to the number of visitors from least to greates

U.S. City	Number of Visitors
Boston	7.21×10^{5}
Las Vegas	1.3×10^{6}
Los Angeles	2.2×10^{6}
Metro D.C. area	9.01×10^{5}

6. Sivan If you could walk at a rate of $\mathbf{2}$ meters per second, it would take you $1.92 \times 10^{\mathbf{8}}$ seconds to walk to the moon. Is it more appropriate to report this time as $1.92 \times 10^{\mathbf{8}}$ seconds or 6.09 years? Explain your reasoning.

The measure 6.09 years is more appropriate. The number 1.92×10^{8} seconds is very large so choosing a larger unit of measure is more meaningful.

Got It? Do this problem to find out.

h. Sill in In an ocean, the sea floor moved 475 kilometers over 65 million years. Is it more appropriate to report this rate as 7.31×10^{-5} kilometer per year or 7.31 centimeters per year? Explain your reasoning.

$$
7.31 \mathrm{~cm}-
$$

Write each number in standard form. (Examples 1 and 2)

1. $9.931 \times 10^{5}=993,100$
2. $6.02 \times 10^{-4}=\mathbf{0 . 0 0 0 6 0 2}$

Write each number in scientific notation. (Examples 3 and 4)
3. $8,785,000,000=8.785 \times 10^{9}$
5. The table lists the total value of music shipments for four years. List the years from least to greatest dollar amount.
(Example 5)
year 4, year 3, year 2, year 1
4. $0.524=5.24 \times 10^{-1}$

Year	Misic Shipments(\$)
1	1.22×10^{10}
2	1.12×10^{10}
3	7.15×10^{6}
4	1.06×10^{7}

6. Silan A plant cell has a diameter of 1.3×10^{-8} kilometer. Is it more appropriate to report the diameter of a plant cell as 1.3×10^{-8} kilometer or 1.3×10^{-2} millimeter? Explain your reasoning. (Example 6)
1.3×10^{-2} millimeter; the number is very small so choosing a smaller unit of measure is more meaningful.

9/28 Computing with Scientific Notation

Warm-up:

$$
\begin{aligned}
& \text { 1) } 9 \cdot 10^{9}\left(-2 \cdot 10^{-3}\right) \\
& 9(-2)=-18 \\
& 10^{9} \cdot 10^{-3}=10^{6} \\
& -18 \cdot 10^{6}
\end{aligned}
$$

$\mathrm{Not}_{\substack{\text { Scientific } \\ \text { Notation }}}^{7-1.8 \times 10^{7}}$
Notation just yet...

Let's see...

$$
\begin{aligned}
& 4 x^{2} y^{3}\left(5 x y^{6}\right)=20 x^{3} y^{9} \\
& 4 \cdot 5=20 \\
& x^{2} \cdot x=x^{2+1}=x^{3} \\
& y^{3} \cdot y^{6}=y^{3+6}=y^{9}
\end{aligned}
$$

Multiplying \& Dividing with SN

Ex 1: $\left(7.2 \times 10^{3}\right)\left(1.6 \times 10^{4}\right)$

$$
\begin{aligned}
& 7.2(1.6)=11.52 \\
& 10^{3} \times 10^{4}=10^{3+4}=10^{7} \\
& 11.52 \times 10^{7} \\
& 1.152 \times 10^{8}
\end{aligned}
$$

Let's use Laws of Exponents! May! ..

$$
\begin{aligned}
& \text { Ex 2: }\left(2.63 \times 10^{4}\right)\left(1.2 \times 10^{-3}\right) \\
& 2.63(1.2)=3.156 \\
& 10^{4} \cdot 10^{-3}=10^{4+(-3)}=10^{1} \\
& 3.156 \times 10^{1}
\end{aligned}
$$

$$
\begin{array}{r}
\text { Ex 3: } \frac{8.37 \times 10^{8}}{2.7 \times 10^{3}} \\
8.37 \div 2.7=3.1 \\
\frac{10^{8}}{10^{3}}=10^{8.3}=10^{5} \\
3.1 \times 10^{5}
\end{array}
$$

$$
\begin{aligned}
& E \times 4: \frac{3.24 \times 10^{-7}}{8.1 \times 10^{-4}} \\
& 3.24 \div 8.1=0.4 \\
& 10^{-7-(-4)}=10^{-7+4}=10^{-3} \\
& 0.4 \times 10^{-3}=0.0004 \\
& 4 \times 10^{-4}
\end{aligned}
$$

Addition \& Subtraction

$$
\begin{aligned}
E \times 5: & \left(6.89 \times 10^{4}\right)+\left(9.24 \times 10^{5}\right) \\
& \left(6.89 \times 10^{4}\right)+\left(92.4 \times 10^{4}\right)
\end{aligned}
$$

Remember: $(3 \times 6)+(4 \times 6)=(3+4) 6$

$$
\begin{aligned}
& (6.89+92.4) \times 10^{4} \\
& =99.29 \times 10^{4} \\
& =9.929 \times 10^{5}
\end{aligned}
$$

$$
\begin{aligned}
& E \times 6:\left(7.83 \times 10^{8}\right)-11,610,000 \\
&\left(7.83 \times 10^{8}\right)-\left(1.161 \times 10^{7}\right) \\
&\left(\frac{\left.78.3 \times 10^{7}\right)-\left(1.161 \times 10^{7}\right)}{(78.3-1.161) \times 10^{7}}\right. \\
& 72.139 \times 10^{7} \\
& 7.7139 \times 10^{8}
\end{aligned}
$$

