\qquad
\qquad

Slope Intercept Form

In a nonproportional linear relationship, the graph passes through the point $(0, b)$ or the y-intercept. The y-intercept of a line is the y-coordinate of the point where the line crosses the y-axis.
Complete the steps to derive the equation for a nonproportional linear relationship by using the slope formula.
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m$
Slope formula

$$
\begin{aligned}
\frac{y-b}{x-0} & =m \\
(x) \frac{y-b}{x} & =m(x) \\
y-b & =m \cdot x+b \\
y & =m x+b
\end{aligned}
$$

$\left(x_{1}, y_{1}\right)=(0, b)$

$$
\left(x_{2}, y_{2}\right)=(x, y)
$$

Simplify.

Slope-Intercept Form of a Line

Nonproportional linear relationships can be written in the form of $y=\frac{m x+b}{m}=$
This is called slope-intercept form. When an equation is written in this form, m is
\qquad
Nonproportional linear relationships can be written in the form of $y=\frac{m x+b}{m}=$
This is called slope-intercept form. When an equation is written in this form, m is
Nonproportional linear relationships can be written in the form of $y=\frac{m x+b}{m}$ is the slope and \qquad is the y-intercept.

Examples

Multiplication Property of Equality
Addition Property of Equality

1. State the slope and the y-intercept of the graph of the
equation $y=\frac{2}{3} x-4 . \quad y=\frac{2}{3} x+(-4)$

$$
m=\frac{2}{3} \quad b=-4
$$

Got It? Do these problems to find out.
a. $y=-5 x+3$
b. $y=\frac{1}{4} x-6$
c. $y=f x+5$
$m=-5$
$m=\frac{1}{4}$
$b=3$
$b=-6$
$m=-1$
$b=5$
2. Write an equation of a line in slope-intercept form with a slope of -3 and a y-intercept of -4 .

$$
y=m x+b
$$

$$
y=-3 x-4
$$

3. Write an equation in slope-intercept form for the graph shown.

$$
y=-\frac{1}{2} x+4
$$

Got It? Do these problems to find out.
d. Write an equation in slope-intercept form for the graph shown.
e. Write an equation of a line in slopeintercept form with a slope of $\frac{3}{4}$ and a y-intercept of -3 .

$$
y=\frac{3}{4} x-3
$$

(d) $m=\frac{5}{3}$

$$
\begin{gathered}
b=-2 \\
y=\frac{5}{3} x-2
\end{gathered}
$$

Graphing using Slope-Intercept Form
Example A: Graph $y=\frac{3}{4} x+2$.

$$
\begin{aligned}
& m=\frac{3}{4} \\
& b=2 \rightarrow(0,2)
\end{aligned}
$$

Example B: Graph $y=\frac{5}{2} x-3$.

$$
y=0 x-7
$$

Example D: Graph $y=-7$.

Example C: Graph $y=-4 x-6$.

Example E: Graph $x=4$.

Interpret they-intercept

When an equation in slope-intercept form applies to a real-world situation, the slope represents the rate of change and the y-intercept represents the initial value.

Examples

4. Student Council is selling T-shirts during spirit week. It costs $\mathbf{\$ 2 0}$ for the design and $\mathbf{\$ 5}$ to print each shirt. The cost \boldsymbol{y} to print x shirts is given by $y=5 x+20$. Graph $y=5 x+20$ using the slope and y-intercept.

Step 1 Find the slope and y-intercept.
$y=5 x+20$
slope $=5$
y-intercept $=20$
Step 2 Graph the y-intercept (0, 20).

Step 3 Write the slope 5 as $\frac{5}{1}$. Use it to locate a second point
 on the line. Go up 5 units and right 1 unit. Then draw a line through the points.

5. Interpret the slope and the y-intercept.

The slope 5 represents the cost in dollars per T-shirt. The y-intercept 20 is the one-time charge in dollars for the design.

Got It? Do these problems to find out.

A taxi fare \boldsymbol{y} can be determined by the equation $y=0.50 x+3.50$, where x is the number of miles traveled.
f. Graph the equation.
g. Interpret the slope and the y-intercept.
Slope represents the cost

per mile. Y-intercept of 3.5 represents the initial cost of $\$ 3.50$.

