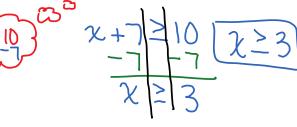
Solving Inequalities

Use Addition and Subtraction Properties to Solve Inequalities

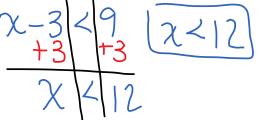
Words	When you add or subtract the same number from each side of an inequality, the inequality remains true.	
Example	5 < 9 11 > 6	
	+4 + 4 $-3 - 3$	
	9 < 13 8 > 3	

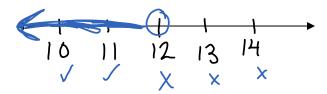

Checking Solutions You can check your

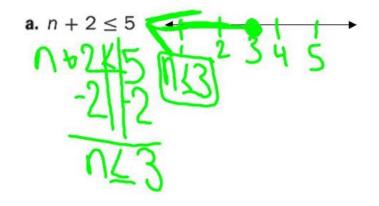
solutions by substituting numbers into the inequality and testing to verify that it holds true.

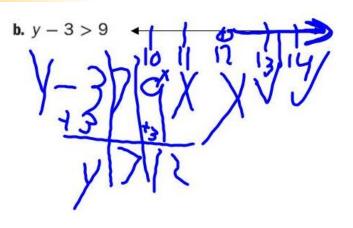
These properties are also true for \leq and \geq .

Examples

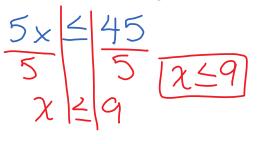

1. Solve $x + 7 \ge 10$. Graph the solution on a number line.

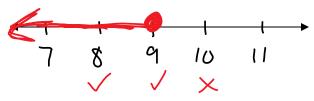



Tutor


2. Solve x - 3 < 9. Graph the solution on a number line.

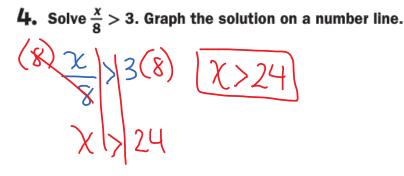
Got It? Do these problems to find out.

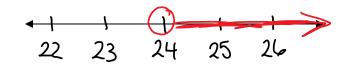

Use Multiplication and Division Properties to Solve Inequalities


Words	When you <mark>multiply or c</mark>	divide each side of an inequality by th <mark>e</mark>
	same <i>positive</i> numbe <mark>r</mark>	, the <mark>inequality remains true</mark> .
Example	5 < 10	16 > 12
	5 × 2 < 10 × 2	$\frac{16}{2} > \frac{12}{2}$
	10 < 20	8 > 6

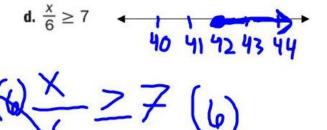
These properties are also true for \leq and \geq .

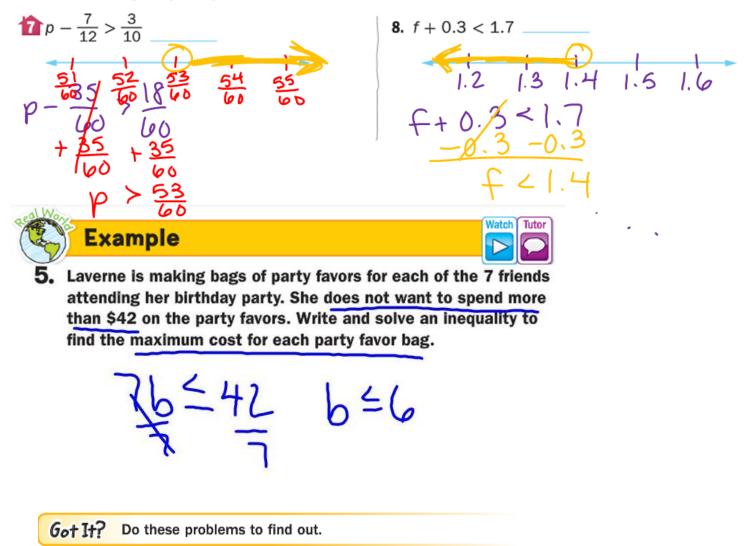
Examples


3. Solve $5x \le 45$. Graph the solution on a number line.



Tutor

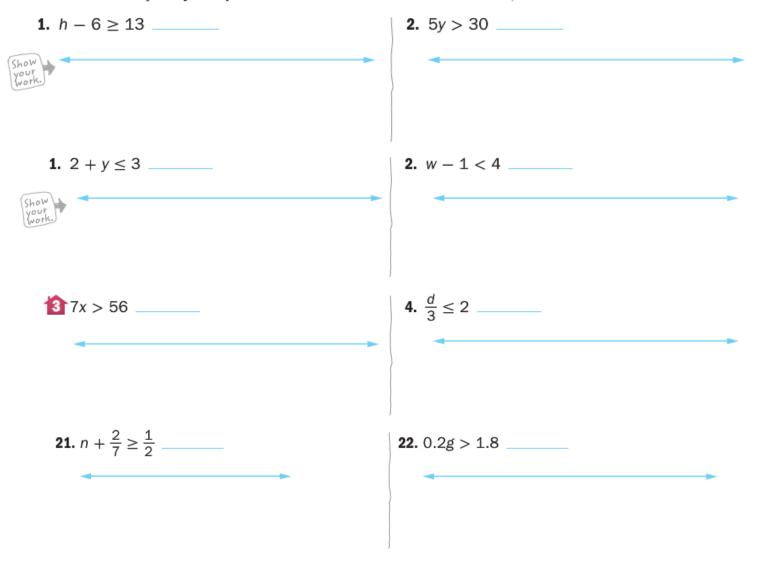

 \mathbf{P}



Got It? Do these problems to find out.

 $r = \frac{10x}{10} < \frac{80}{10} < \frac{10}{678910}$ $\chi = 8 \chi < 8$

Solve each inequality. Graph the solution on a number line.


 Johanna's parents give her \$10 per week for lunch money. She cannot decide whether she wants to buy or pack her lunch. If a hot lunch at school costs \$2, write and solve an inequality to find the maximum number of times per week Johanna can buy her lunch. (Example 5)

 Tino's Pizza charges \$9 for a cheese pizza. Eileen has \$45 to buy pizza for the Spanish Club. Write and solve an inequality to find the maximum number of pizzas that

Eileen can buy. (Example 5) ____

Guided Practice

Solve each inequality. Graph the solution on a number line. (Examples 1-4)

- A company charges \$0.10 for each letter engraved. Bobby plans to spend no more than \$5.00 on the engraving on a jewelry box. Write and solve an inequality to find the maximum number of letters he can have engraved. (Example 5)
- 20. A sales associate at a computer store receives a bonus of \$100 for every computer he sells. He wants to make \$2,500 in bonuses next month. Write and solve an inequality to find the minimum number of computers

he must sell.