Solving Multiplication and Division Equations with Rational Numbers

Solve a Multiplication Equation
A multiplication equation is an equation like $2 x=10$ because the variable x is multiplied by 2 . Multiplication and division are inverse operations. So, to solve a multiplication equation, use division.

Division Property of Equality
Words If you divide each side of an equation by the same nonzero number, the two sides remain equal.

Example

Examples
\qquad
4. Solve $3.28 x=19.68$. Check your solution.
$3.28 x=19.68$
$\frac{3.28 x}{3.28}=\frac{19.68}{3.28}$ $x=6$

Write the equation.
Divide each side by 3.28 .

Check $3.28 x=19.68$ Wite the original equation.

$$
\begin{aligned}
& 3.28(6) \stackrel{?}{=} 19.68 \\
& 19.68=19.68 \mathrm{Veplace} x \text { with } 6 \\
& \text { This sentence is true. }
\end{aligned}
$$

Got It? Do these problems to find out.
Solve each equation. Check your solution.

Fraction Coefficients

Recall that two numbers with a product of 1 are called multiplicative inverses, or reciprocals. If the coefficient in a multiplication equation is a fraction, multiply each side by the reciprocal of the coefficient.

3. Solve $\frac{3}{4} x=\frac{12}{20}$.

$\frac{\frac{1}{3}}{3} \cdot \frac{1}{3} x=\frac{1}{4} \cdot \frac{4}{3} \cdot \frac{12}{20}$

Write the equation.
Multiply each side by the reciprocal of $\frac{3}{4}, \frac{4}{3}$.

Divide by common factors.

Simplify. Check the solution.

Fractions as
Coefficients
The expression $\frac{3}{4} x$ can be read as $\frac{3}{4}$ of $x, \frac{3}{4}$ multiplied by $x, 3 x$ divided by 4, or $\frac{x}{4}$ multiplied by 3 .

Solve each equation. Check your solution.

30. $3 \frac{1}{2} r=28$

$\frac{7}{2}\left(\frac{8}{1}\right)^{4} \frac{28}{1}$

Solve each equation. Check your solution.
24. $5.9 q=23.6$
32. $2 \frac{3}{4} a=19 \frac{1}{4}$
25. $2.55 d=17.85$
.
26. $6.5 a=32.5$
34. $3 \frac{3}{4} m=33 \frac{3}{4}$
17. The Walkers traveled 182 miles in $3 \frac{1}{2}$ hours. The equation $3.5 \mathrm{~m}=182$ can be used to find their mean rate of travel. What is the value of m ?

